Non-syndromic concomitant hypodontia and supernumerary teeth in an orthodontic population

Margarita Varela, Patricia Arrieta and Cesar Ventureira
Unidad de Ortodoncia, Fundación Jiménez Díaz, Madrid, Spain

SUMMARY The simultaneous occurrence of hypodontia and supernumerary teeth in the same individual is termed ‘concomitant hypo-hyperodontia’ (CHH). There appears to be a correlation between CHH and some syndromes, but this anomaly is very rare in the general population. The aim of this study was to investigate the frequency of CHH in a large sample of non-syndromic orthodontic patients. The records of 2108 consecutive non-syndromic orthodontic patients aged from 7 to 16 years were examined retrospectively. Every patient had at least one panoramic radiograph. When the diagnosis of hypodontia and/or hyperodontia was made in a child under 10 years of age, a second panoramic film was taken 2–4 years later. Statistical analysis of the data was undertaken using a chi-square test.

Single or multiple hypodontia was diagnosed in 137 patients (6.5 per cent), 62 males and 75 females. One or more supernumerary teeth were found in 42 patients (2 per cent), 22 males and 20 females. CHH was diagnosed in seven subjects (0.33 per cent), four males and three females. In the CHH subpopulation, the total number of absent and supernumerary teeth was nine and eight, respectively. Hypodontia always occurred in the permanent dentition and was more frequent in the mandible than in the maxilla (four versus three teeth). Supernumerary teeth were more frequent in the permanent than in the primary dentition (six versus two teeth). Five supernumeraries were located in the maxilla and three in the mandible.

Introduction

Reports of the prevalence of hypodontia in the literature vary widely, ranging from 0.5 to 2.4 per cent for the primary and from 2.6 to 11.3 per cent for the permanent dentition (Polder et al., 2004; Larmour et al., 2005). These data exclude agenesis of one or more third molars, with a prevalence of 11.5 per cent (Sandhu and Kaur, 2005). The reported hypodontia gender ratio is approximately 2:3 (male:female, Polder et al., 2004). In the Caucasian population, the most frequently absent teeth are the mandibular second premolars, followed by the maxillary lateral incisors (Polder et al., 2004), but in some Asian populations, agenesis of the mandibular lateral incisors is more prevalent (Davis, 1987; Endo et al., 2006). Hypodontia can be associated with other dental abnormalities, such as a cleft lip and palate (CLP) as well as with more than 50 syndromes (Ranta, 1987; Taylor, 1972). The wide range reported for the permanent dentition can be explained by differences in detection methods, population type, and age of the evaluated subjects. In the permanent dentition, supernumerary teeth are more frequent in males than in females, with a 2:1 ratio (M:F) in Caucasian populations (Rajab and Hamdan, 2002). In some Asian surveys, the predominance of male patients is 6.5:1 (Davis, 1987), but this sexual dimorphism is not observed in the primary dentition (Kinirons, 1982).

The crowns of supernumerary teeth may show either a normal appearance or different atypical shapes and their roots may be completely or incompletely developed (Garvey et al., 1999). Approximately, two-thirds of primary and one-quarter of permanent supernumerary teeth erupt normally. The rest remain unerupted and may produce complications (Asaumi et al., 2004; Tirologou et al., 2005). Supernumerary teeth, particularly when multiple, can be associated with a CLP and with a small number of systemic syndromes, such as cleidocranial dysostosis and Gardner syndrome (Rajab and Hamdan, 2002). Several theories have been proposed to explain the aetiology of supernumerary teeth. The available data suggest a pattern of multifactorial inheritance that gives rise to hyperactivity of the dental lamina (Rajab and Hamdan, 2002).
Concomitant hypo-hyperodontia

The simultaneous occurrence of both conditions, hypodontia and supernumerary teeth, in the same individual is termed ‘concomitant hypo-hyperodontia’ (CHH) or oligo-pleidontia. In the general population, CHH is rare and published studies of its prevalence are scarce. Moreover, most of these studies are reports of single (Camilleri, 1967; Munns, 1967; Brook and Winter, 1970; Mercer, 1970; Nathanail, 1970; Low, 1977; Ferguson, 1984; Zhu et al., 1996; Segura and Jiménez-Rubio, 1998; Matsumoto et al., 2001; Sharma, 2001; Das et al., 2006) or very few (Spyropoulos et al., 1979) cases or surveys which present incomplete information or other methodological shortcomings (Werther and Rothenberg, 1939; Niswander and Sujaku, 1963; Horowitz, 1966). In surveys of the general population or of children attending general dental practices, the frequency of CHH ranges between 8 and 15 per 10,000 (Mercer, 1970; Brook, 1974). Its prevalence seems to be higher in certain Asian populations (40 per 10,000 in a Chinese survey; Davis, 1987) As in the case of both isolated hypodontia and hyperodontia, CHH is found more frequently in the permanent than in the mixed or primary dentitions (Ranta, 1988). There appears to be a correlation between CHH and CLP and with some syndromes such as Down (Kevin et al., 1997; Acerbi et al., 2001) and Ellis van Creveld (Varela and Ramos, 1996; Hattab et al., 1998). These associations can be explained by the higher prevalence of isolated hypodontia and supernumerary teeth in these conditions.

The aetiology of CHH, a combination of two conditions that can be considered as opposite developmental disorders, is unknown. Genetic and environmental causes have been proposed and several attempts have been made to find a possible interpretation of the association of both numerical abnormalities. It may result from disturbances in migration, proliferation, and differentiation of neural crest cells or from interactions between the epithelial and mesenchymal cells during the initiation of odontogenesis (Ranta, 1988).

When hypodontia and hyperodontia are located in the same jaw and quadrant, the association could be considered a transposition (Segura and Jiménez-Rubio, 1998), which is the positional interchange of two adjacent teeth or the development and eruption of a tooth in a position normally occupied by a non-adjacent tooth (Peck and Peck, 1995). However, this theory can explain neither CHH in different quadrants nor many cases of CHH in the same quadrant with atypical morphologies.

The aim of this study was to determine the prevalence of non-syndromic CHH in a large sample of orthodontic patients and to ascertain the distribution frequencies of the teeth involved.

Subjects and method

The subjects were selected from those who attended for consultation at the Orthodontic Unit of Fundación Jiménez Díaz, Madrid, Spain, during the period from January 1996 to December 2005. All patients aged between 7 and 16 years who had complete records were included in the sample. Those with a CLP or systemic syndromes were excluded. The developmental absence of one or more third molars was not considered a criterion for hypodontia. The population evaluated consisted of 2108 non-syndromic subjects, 903 male and 1205 female, aged from 7 to 16 years. The gender ratio was approximately 5:7. All the subjects were of Caucasian origin.

An intraoral examination had been undertaken in all patients and the radiographic records included at least one panoramic radiograph, which was supplemented when necessary by periapical, occlusal views, and a computed tomograph. The frequency and distribution of hypodontia, supernumerary teeth, and concomitance of these anomalies in an individual were recorded. When hyperodontia and/or hypodontia of a permanent tooth was diagnosed in a patient under 10 years of age, the radiographic examination was repeated after a period of 2–4 years to diagnose any new supernumerary teeth or to exclude the diagnosis of pseudohypodontia due to delayed formation of germs.

Statistical analysis

Statistical analysis of the data was undertaken using a chi-square test.

Results

CHH was found in seven of the 2108 patients (0.33 per cent), four males and three females. The gender ratio was 1.3:1 (M:F). The frequency of CHH was 0.44 per cent for males and 0.25 per cent for females. The differences by gender, although favouring males in both cases, were not statistically significant.

One or more supernumerary teeth were found in 42 individuals (2 per cent of the overall sample), of which 22 (52.4 per cent) were male and 20 (47.6 per cent) female. The gender ratio of the hyperodontia subpopulation was 1.1:1 (M:F). The proportion of patients with supernumerary teeth by gender was 2.43 per cent for males and 1.65 per cent for females. The difference was not statistically significant.

Agenesis of one or more teeth, excluding the third molars, was present in 137 individuals (6.5 per cent of the overall sample), 62 males and 75 females. The gender ratio of hypodontia in this subpopulation was 1:1.2 (M:F). The proportion of hypodontia by gender was 6.5 per cent for males and 6.8 per cent for females.

The percentage of patients with hypodontia who presented concomitance of supernumerary teeth was 5.1 per cent (6.45 per cent males and 4.0 per cent females). The corresponding percentage of patients with hyperodontia and concomitance of agenesis was 16.7 per cent (18.2 per cent males and 15
per cent females). Therefore, the likelihood of a patient of any gender with agenesis also having supernumerary teeth was approximately 1 in 18. The chance of a subject of any gender with supernumerary teeth also having missing teeth was 1 in 6.

Supernumerary teeth and hypodontia were located in the same dentition (permanent) in six of the seven subjects, in the same jaw in five and in the same quadrant in two. The overall number of supernumerary teeth was eight, three of them in the primary dentition. Two patients had a mesiodens, one of them impacted. The mesiodens of the other patient was completely erupted between the central incisors and was located to the right of the upper fraenulum. Hypodontia in this subject corresponded to the upper lateral incisor of the opposite quadrant (Figure 1A–C). The size and morphology of this supernumerary tooth was similar to that of a lateral or even a central incisor. Therefore, it could have been considered a supplemental supernumerary tooth. However, in view of its central position together with the somewhat irregular morphology of its vestibular surface, it was diagnosed as a mesiodens.

There were nine absent teeth in the CHH sample, all in the permanent dentition. Three of the absent teeth were upper lateral incisors and six lower second premolars.

The findings of the first panoramic radiograph were confirmed in the successive examinations in all subjects: No new germs of normal teeth in patients with hypodontia, or new supernumerary teeth in those with hyperodontia, were found after the initial diagnosis. The abnormalities found in the seven patients are listed in Table 1.

**Discussion**

The overall orthodontic sample in the present study included a higher proportion of females than males (around 5:7, M:F), which is a relatively common finding in most orthodontic surveys, and may be attributable to the higher value that society gives to aesthetics in females (Wijsbeek, 2000). For that reason, in this survey, all the evaluations were carried out separately for both genders.

The prevalence of hypodontia and hyperodontia in this overall sample, of 7.3 and 2.3 per cent, respectively, is in the range of that recorded in other samples that excluded agenesis of third molars and systemic syndromes (Rajab and Hamdan, 2002; Polder et al., 2004). However, the gender differences reported by other authors, where gender ratios of approximately 2:3 (M:F) were found for hypodontia (Larmour et al., 2005) and 2:1 (M:F) for hyperodontia (Rajab and Hamdan, 2002), were not confirmed.

The frequency of CHH in this research was 33 per 10,000 higher than that in most published surveys, which report a range between 8 and 15 per 10,000 (Mercer, 1970; Brook, 1974). This finding is surprising as this sample did not include CLP, syndromic patients, or subjects with isolated third molar agenesis. The inclusion of patients with a CLP or with syndromes which are usually associated with numerical abnormalities of the teeth, such as Down (Acerbi et al., 2001), may be responsible for the higher than average prevalence of CHH found in some surveys. For example, in a series of 11 patients with CHH (Ranta, 1988), nine had some type of clefting and only two were non-syndromic.

A higher than average CHH prevalence may also be found when the isolated agenesis of one or more third molars is accepted as the criterion for hypodontia even though the definition of hypodontia excludes third molar agenesis (Goodman et al., 1994). For example, in a study of
CHH in a sample of 4598 orthodontic patients, Gibson (1979) reported a frequency of 41 per 10000. However, included among the 20 patients with CHH were two with systemic syndromes and six with developmental absence of third molars. In the present study, the subjects, with very few exceptions, were aged between 7 and 16 years and third molar status was indeterminate in a large proportion. Therefore, this high prevalence could even be an underestimation. The same can be said for the survey of O’Dowling (1989) of 3056 orthodontic patients, where an even higher CHH prevalence (45 per 10000) was found. That author recognized that this figure could be higher if a more mature sample had been examined.

The consideration of congenital absence of third molars as hypodontia and the inclusion of syndromic patients in some surveys are not the only reasons that explain the discrepancies in the published frequencies. Racial differences and sampling variation, i.e. size, local factors, and preselection of the individuals, can also be responsible for these discrepancies (Gibson, 1979). Particularly, an orthodontic sample can include more patients with hypodontia, supernumerary teeth, or CHH than the general population or general dentistry samples because those numerical anomalies can be associated with irregularities of the anterior teeth that prompt referral to an orthodontist. In the survey by Gibson (1979), the anomaly had been accidentally discovered in half of the 20 patients with CHH, but in the remaining subjects, the irregularity of the anterior teeth secondary to the numerical anomaly had caused referral to the orthodontist. In the present sample, the orthodontic consultation was directly or indirectly related to CHH in four patients. Moreover, the higher than average proportion of CHH in this sample, in spite of the exclusion of cleft palate, syndromic patients, and subjects with isolated congenital absence of a third molar, could be explained by the type of practice from which the sample was obtained, namely a hospital-based orthodontic clinic, where a greater number of patients who require surgical treatment are referred. The gender ratio of the patients with CHH was 4:3 (M:F), higher than the proportion recorded in other surveys, but the small size of the sample does not allow a specific conclusion to be reached.

Although it is usually possible to confirm anodontia of a permanent tooth, including second molars, in some very young children, a normal germ may often be radiographically visible only many years later (Moorrees et al., 1963). To avoid misdiagnosis of hypodontia due to delayed formation of tooth germs, which might be erroneously considered as developmental absence in young subjects, radiographic examinations were repeated in every patient under 10 years of age who had one or more congenitally missing teeth observed at the first examination. However, no new normal germs appeared at the sites where agenesis had been initially diagnosed. A radiographic examination was also repeated 2 or 4 years after diagnosis of a supernumerary tooth in any patient under 10 years of age to determine if any supernumerary teeth had formed later, but the number remained unchanged.

In this sample, the risk of a subject with hypodontia also having one or more supernumerary teeth was approximately 1 in 18, while for a patient with a supernumerary tooth also having hypodontia was higher, reaching 1 in 6. Although the difference by gender favoured males in both cases, this difference was not statistically significant. These data suggest that the risk of having a CHH when a supernumerary tooth is diagnosed is significant, but this finding has not been reported by other authors. For example, Novak (1974) found five patients with hypodontia in a survey of 161 subjects with a supernumerary tooth; i.e. the frequency of CHH was 3.1 per cent of patients with supernumerary teeth. This corresponds to an approximate risk of only 1 in 30. Due to the morphology of the supernumerary tooth, similar to that of a normal lateral incisor, the CHH of patient number 5 in the present study was initially misdiagnosed as transposition of 22 and 21 (Figure 1A–C). However, this diagnosis was excluded because the supernumerary was located to the right of the midpalatal suture and the absent tooth was the upper left lateral incisor. The interpretation of this rare association as a form of transposition could only be accepted in those cases of CHH where both numerical abnormalities are present in the same dentition and in the same quadrant (Peck and Peck, 1995, Segura and Jiménez-Rubio, 1998). This finding was not present in any of the seven patients in this series.

**Conclusion**

The results confirm the low prevalence of CHH in this orthodontic non-syndromic population. Given the difficulty of obtaining a sufficient number of panoramic radiographs in the general population, orthodontic diagnostic records serve as a valuable source of information for the evaluation

<table>
<thead>
<tr>
<th>Case number</th>
<th>Gender</th>
<th>Supernumerary teeth</th>
<th>Agenesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Female</td>
<td>42</td>
<td>35</td>
</tr>
<tr>
<td>2</td>
<td>Male</td>
<td>Unerupted Maxillary</td>
<td>35, 45</td>
</tr>
<tr>
<td>3</td>
<td>Male</td>
<td>12</td>
<td>35</td>
</tr>
<tr>
<td>4</td>
<td>Male</td>
<td>32</td>
<td>35, 45</td>
</tr>
<tr>
<td>5</td>
<td>Male</td>
<td>Erupted Maxillary</td>
<td>22</td>
</tr>
<tr>
<td>6</td>
<td>Female</td>
<td>62</td>
<td>22</td>
</tr>
<tr>
<td>7</td>
<td>Female</td>
<td>52, 12</td>
<td>22</td>
</tr>
</tbody>
</table>

*Previously extracted.*
of disturbances of dental development, although the prevalence may be overestimated in normal populations.

**Address for correspondence**

Dr Margarita Varela
Unidad de Ortodoncia
Fundación Jiménez Díaz
Avda Reyes Católicos 2
28040 Madrid
Spain
E-mail: memorivarela@gmail.com

**Acknowledgement**

The authors are grateful to Dr Björn U. Zachrisson for generously proofreading the manuscript and for his help and valuable suggestions.

**References**


Davis P J 1987 Hypodontia and hyperodontia of the permanent teeth in Hong Kong schoolchildren. Community Dentistry and Oral Epidemiology 15: 218–220


Kevin M C, Chow B D S, O’Donnell D 1997 Concomitant occurrence of hypodontia and supernumerary teeth in a patient with Down syndrome. Special Care in Dentistry 17: 54–57


Munns D 1967 A case of partial anodontia and supernumerary teeth present in the same jaw. Dental Practitioner and Dental Record 18: 34–37


Taylor GS 1972 Characteristics of supernumerary teeth in the primary and permanent dentition. Dental Practitioner and Dental Record 22: 203–208


